
Original Research

doi:10.4102/ijmla.v1i1.3http://www.ijmla.net

The impact of Memory Transfer Language (MTL) on
reducing misconceptions in teaching programming to

novices
Authors:
Leonard J. Mselle1

Hashim Twaakyondo2

Affiliations:
1Department of Computer
Science, University of
Dodoma, Tanzania

2Department of Computer
Science, University of Dar es
Salaam, Tanzania

Correspondence:
Leonard Mselle

Email:
mselel@yahoo.com

Postal address:
PO Box 490, Dodoma,
Tanzania

Dates:
Received: 2011
Accepted: 23 Mar. 2011
Published: 28 June 2012

How to cite this article:
Mselle LM, Twaakyondo
H. The impact of Memory
Transfer Language (MTL) on
reducing misconceptions
in teaching programming
to novices. Int J Machine
Learn Appl. 2012;1(1),
Art. #3, 6 pages. http://
dx.doi.org/10.4102/ijmla.
v1i1.3	

Despite the fact that programming is at the heart of computer science, it is argued that even at
its simplest level it is a difficult subject to teach and learn. For any new learner programming
concepts are abstract and confusing. As teaching programming continues to be a daunting
task, this article revisits common challenges inherent in teaching computer programming
to novices. Further, Memory Transfer Language (MTL) as used to teach programming is
introduced and demonstrated. Different kinds of misconceptions in programming and their
associated bugs are analysed. An experiment using MTL to teach programming was carried
out, using error-counts in examination scripts from two groups of students, one instructed
using MTL and the other through the conventional approach. Results indicated a highly
significant statistical difference (p = 0) between the two groups, showing that MTL can help
novices avoid common programming misconceptions and reduce the errors they make. This
shows that if programming is taught using MTL, comprehension is enhanced.

© 2012. The Authors.
Licensee: AOSIS
OpenJournals. This work
is licensed under the
Creative Commons
Attribution License.

Introduction
A novice programmer is a person who is learning programming for the first time. The basic
characteristics of novice programmers include inability to design proper algorithms to solve given
tasks, and inability to master the syntax and semantics of programming languages. A distinctive
characteristic of novice programmers is that they see each line of code in isolation from others.
Novices find the learning environment (editors and debuggers) to be unfriendly. This mixture of
challenges makes programming intrinsically a difficult subject to learn.1

Since the 1970s computer science researchers have tried to investigate and suggest various solutions
to this problem. Samurcay2 contends that programming is a complex domain of knowledge and
practice, corresponding both to the scientific field and professional practice field. He argues
that learning programming means acquisition of specific programming concepts mediated by a
technological tool, which necessitates construction of higher-level representations and conceptual
invariants. He concludes that a definite solution to this challenge is not yet available. A similar
point of view is expressed by other authors.3,4,5,6,7,8 Although there are other researchers, like
Wilson and Moffat9, who conclude that programming is not difficult, all researchers propose
further investigation of how to teach programming more effectively.

Employment of models in teaching programming
Employment of models to teach computer programming has been advocated by numerous
researchers.1,4,10 Du Boulay, O’Shea and Monk4 posit that concrete models can have a strong
effect on the encoding and use of new technical information by novices. Allowing novices to
’see the works‘ allows them to encode information in a more coherent and useful way. Testing
their model called LOGO, Du Boulay et al.4 found that the model enabled the user(s) to develop
intuition about what goes on inside the computer for each line of code.

Mayer10 contends that models not only help learning programming but also aid in acquisition of
other aspects of technological knowledge. He argues that when appropriate models are used, the
learner seems able to assimilate each new code statement to their model of the computer system.
Some models, such as Discover by Ramadhan1, have been reported to provide good results in
this direction.

The recent trend has been to combine models with animation tools to teach programming.
Along with concrete models, code animators have been reported to be effective tools in teaching
programming.8,10,11,12 Closely related to animation, automated flowcharts (which combine
traditional flowcharts with the power of animation) have been reported to produce positive results

Page 1 of 6

mselel@yahoo.com
http://dx.doi.org/10.4102/ijmla.v1i1.3
http://dx.doi.org/10.4102/ijmla.v1i1.3
http://dx.doi.org/10.4102/ijmla.v1i1.3

Original Research

doi:10.4102/ijmla.v1i1.3http://www.ijmla.net

in enhancing programming comprehension.13 However, all
current program animators are machine-driven. Apart from
Memory Transfer Language (MTL), there is no evidence of
an absolutely learner-driven animator.14

Problem statement
Although the use of models and animation has yielded
positive results, so far there is no one universally accepted
approach that has entirely solved the problem of learning and
teaching programming. Current program animators, such as
Jeliot 3, BlueJ and Raptor, are machine-driven. This deprives
the learner of the sense of ’I am working the machine‘, which
is important for a novice programmer to build confidence.4 A
learner-driven visualiser could be a solution to this problem.
Teaching and learning programming continues to be a
daunting task for both learners and instructors.3 There is still
much room for improvement of current tools, methods and
approaches to evolve a learner-driven visualisation tool.

Objective of the study
MTL is a learner-driven visualisation tool. An experiment
was carried out to evaluate the impact of MTL in reducing
common misconceptions in programming. We were
interested in determining whether using MTL in teaching
would result in a reduction in common misconceptions and
other common errors in programming. This article revisits
the misconceptions and errors in programming as presented
by Du Boulay5, Perkins et al.15 and Alain.16 We used these
works to evolve a protocol to count the errors committed by
novices. MTL was used to teach programming, and in order
to determine its impact the numbers of errors committed by
novices instructed using MTL were compared with those
made by novices instructed using the conventional approach.

A brief description of Memory
Transfer Language
Memory Transfer Language (MTL) is a language or device
used by programmers to describe the impact of code-line
on computer memory (RAM). MTL is a modified version of
Register Transfer Language (RTL) and trace tables.17 Whilst
RTL describes the program behaviour at machine-language
level, MTL is used to describe program behaviour in high-
level language.

The MTL framework is based on the assumption that any
source code written in high-level language can be humanly
interpreted and/or compiled by reflecting and/or drawing
the RAM status for each line of code. The semantics of each
RAM diagram produced in MTL is both human- and machine-
interpretable. MTL provides a common interpretation of
the source code between the machine and the programmer,
reducing the ambiguity and misconceptions which abound
in programming. MTL is a programming language for
interpreting the source code machine-wise. It is a learner-
driven visualiser comprising macro-steps (statements) as
non-terminals and RAM status as terminals.14,17 The general
framework for MTL is illustrated in Figure 1.

Employment of MTL for program interpretation is fully
covered by Mselle.14 The application of MTL is demonstrated
in Figure 2, Figure 3 and Figure 4, where MTL is used to
describe variable declaration, data inputting, data operation,
loops and functions respectively.

As illustrated in these figures, high-level language statements
such as int sum; sum=0; and i=i+1; are interpreted into
respective RAM status, pictorially reflecting what happens
inside the machine RAM as a statement is executed. Equally,
the concepts of variable initialisation, looping, function calls,
return (), and parameter passing are visibly demonstrated
by MTL. Mselle14 has shown that MTL can be used to cover
all basic programming concepts, including file handling,
pointers and stacks.

The experiment
An experiment was carried out amongst students of Kigali
Institute of Science and Technology who were studying
programming for the first time, in order to test the
effectiveness of MTL in facilitating close-tracking, fixing
bugs, providing feedback and reducing misconceptions.

Method
A sample consisting of 34 examination scripts, drawn from a
population of 543 past examinations collected for five years,
constituted the control group. Twenty eight scripts drawn
from an examination completed by a group of students who
volunteered to pursue the course using MTL constituted
the experiment sample. The experiment group comprised
first-year undergraduates majoring in Architecture and
Environmental Sciences. All students involved in the

Page 2 of 6

Machine and human semantics

Human syntax

Machine semantics

Human syntax

Object code

Machine semantics

Machine syntax

Source code

Source code

Machine semantics

Human syntax

 Compiler

MTL RAM status

Source: Authors’ own data
MTL; Memory Transfer Language; RAM, computer memory.

FIGURE 1: The general framework of Memory Transfer Language.

// Program 1
include <iostream>
main()
{
int x;
int y;
x=4;
y=7;
x=x+y;
}

 Step one Step two Step three

Reserved

Reserved

Free

4

4

Free

11

7

Free

RAM RAM RAM

Variable declaration Assignment Data operation

Code Code Code

int x;
int y;

x
y

x
y

x
y

x=4;
y=7;

x=x+y;

Source: Authors’ own data
RAM, computer memory.

FIGURE 2: Demonstration of variable declaration, data input and operation
(Program 1).

Original Research

doi:10.4102/ijmla.v1i1.3http://www.ijmla.net

Page 3 of 6

experiment were novices studying programming for the first
time. The course title was ‘Introduction to Programming in C’
and the course syllabus covered variable declaration and types
of variables, constants, data inputting, data manipulation, data
outputting, flow of control, functions, arrays, strings, pointers
and file handling. The duration of the course was 52 hours,
with 26 hours used for lectures and 26 for laboratory sessions.
The lead lecturer for the experiment group had five years’
experience in teaching programming in C.

Materials used
The materials used included examination scripts, an errors
protocol and a programming manual in C. The programming

manual covers introductory programming, which includes
variables and variable declaration, data inputting, processing
and outputting. Other topics are covered individually,
including flow of control (bifurcation and looping), arrays,
strings, functions, files handling and pointers.

Examinations and examination scripts
Programming examinations were set by a panel of lecturers
involved in teaching the subject. Questions and solutions
prepared by the panel were handed over to the Examinations
Section. Examinations together with the marking schemes
were reviewed by external examiners to ensure adequacy and
conformity to the syllabus. Examination scripts were marked
by the same panel of examiners. After the examination and
publication of results, the researchers performed a random
selection of 34 scripts from past papers, which were compared
with 28 scripts from the volunteer group.

Errors protocol and programming manual
The errors protocol was constructed by combining types
of programming errors and misconceptions as discussed
by Du Boulay5 Ramadhan1 and Alain.18 This protocol was
constructed and employed to analyse errors committed by
students when answering examinations. The list of errors
included undeclared variables, uninitialised variables,
setting variables to uninitialised value, using = instead of = =
to check for equality, confusion due to repetition of a variable
in a statement (i.e. x = x + 2), and algebraic noise (i.e. treating
a = 4 as 4 = a;) and a = b taken as ’a is linked to b‘. The protocol

int sum;
int i;

RAM
sum RESERVED

i RESERVED
FREE

op { op { op { op
sum=sum+i; 0+1=1 sum=sum+i; 1+2=3 sum=sum+i; 3+3=6

sum=0; 0 i=i+1; 1+1=2 i=i+1; 2+1=3 i=i+1; 3+1=4

i=1; 1 } } }
RAM RAM RAM RAM RAM

sum 0 sum 1 sum 3 sum 6 sum 6
i 1 i 2 i 3 i 4 i 4

FREE FREE FREE FREE FREE
TEST TEST TEST TEST
while(i<4) while(i<4) while(i<4) while(i<4)
IS 1<4? IS 2<4? IS 3<4? IS 4<4?

YES YES YES NO

End of loop

Loop: Round 1

Variable declaration

Initialization

Loop: Round 2 Loop: Round 3

//Program 2
#include <iostream>
main()
{

int sum=0;
int i=1;
while (i<4){

sum=sum+i;
i=i+1;

}
}

Source: Authors’ own data
RAM, computer memory.

FIGURE 3: Loop interpretation (Program 2).

Variable declaration

int sum;

int i;

RAM

sum

i

Reserved

Reserved

Free

// Program 2
include <iostream>
main()
{
int sum=0;
int i=1;
while (i<4) {
sum=sum+i;
i=i+1;
}
}

Yes Yes Yes No

End of loop Test Test Test Test

Free Free Free Free Free

} } }

RAM RAM RAM RAM RAM

Initialising

Loop: Round 1 Loop: Round 2 Loop: Round 3

op opopop { { {

sum

i

sum

i

sum

i

sum

i

sum

i

6

4

6

4

3

3

1

2

0

1

sum=sum+i; sum=sum+i; sum=sum+i; 3+3=61+2=3

sum=0; i=i+1;0

1i=1;

i=i+1; i=i+1;

while (1<4)while (1<4)while (1<4)while (1<4)

IS 1<4? IS 2<4? IS 3<4? IS 4<4?

// Program 3

main()

{ Code Code

int sq(), x, z; int sq(),x,z; RAM cin>>x; RAM

cout<<"Enter a number"; x RESERVED x 6

cin>>x; z RESERVED z RESERVED

z=sq(x); FREE FREE

cout<<"The square of"<<x;

cout<< "is"<<z;

}

int sq(y)

{ Code RAM Code RAM

return(y*y); z=sq(x) x 6 y*y x 6

} z RESERVED z RESERVED

y 6 y 6 x 6

Code RAM

return(y*y); x 6

z 36

FREE

Step Five. Return

Step One. Declarations Step Two. Data feeding

Step Three. Function call Step Four. Function execution

Source: Authors’ own data
RAM, computer memory.

FIGURE 4: Functions interpretation (Program 3).

// Program 3

main()

{ Code Code

int sq(), x, z; int sq(),x,z; RAM cin>>x; RAM

cout<<"Enter a number"; x RESERVED x 6

cin>>x; z RESERVED z RESERVED

z=sq(x); FREE FREE

cout<<"The square of"<<x;

cout<< "is"<<z;

}

int sq(y)

{ Code RAM Code RAM

return(y*y); z=sq(x) x 6 y*y x 6

} z RESERVED z RESERVED

y 6 y 6 x 6

Code RAM

return(y*y); x 6

z 36

FREE

Step Five. Return

Step One. Declarations Step Two. Data feeding

Step Three. Function call Step Four. Function execution

// Program 3
main()
{
int sq(), x, z;
cout<<"Enter a number";
cin>>x;
z=sq(x);
cout<<"The square of"<<x;
cout<< "is"<<z;
}
int sq(y)
{
return (y*y);
}

 Step one

Code
Declaration

Reserved

Data feeding
 Step two

Code

Reserved
Free

 Step three
Functional call

RAM RAM

RAM

Code

 Step four

RAM

Function execution
Code

RAM

Code

 Step five
Return

int sq(), x, z; cin>>x;

Reserved
Free

Reserved Reserved
6

6

6

6

6x6

6
36
Free

z=sq(x) y*y

return(y*y);

x
z
y

x
z

x
z
y

x
z

x
z

Original Research

doi:10.4102/ijmla.v1i1.3http://www.ijmla.net

Page 4 of 6

focuses only on fundamental errors. In order to guarantee
simplicity, more complex errors such as those pertinent to
function arguments, confusion of types and violation of
array boundaries were excluded. A complete programming
manual in C, derived from Mselle14 written in MTL and
describing all programming aspects was used. Employing
the protocol, errors committed by students were analysed,
recorded and counted.

Procedure

The lecturer of the experiment group was requested to use
the manual, which was written based on MTL, to explain
all aspects of introductory programming in C. The lecturer
agreed to introduce the manual to students and advised
them to use it for their studies and laboratories along with
other books. Students were informed of the experiment and
the specific approach of the manual. Initially students were
reluctant to use the manual because they had already been
given class notes, from which they were told examination
and tests would be set. The lecturer continued to employ
the manual for lecture and laboratory sessions due to its
illustrative approach and the simplicity with which the
material is presented. Students built up the courage to
volunteer for the experiment after attending four hours of
classes. Twenty eight volunteers were instructed using the
MTL approach. In the end examination scripts were used to
analyse the amount of errors committed, and this amount
was compared with errors counted in 34 scripts randomly
selected from the population of past papers.

Results
Error-count results from the control and experiment groups
are summarised in Table 1.

Results from using error-counts in examination scripts from
two groups of students, where one group was instructed
using MTL and the other through the conventional approach,
suggested a highly significant statistical difference (Mann-
Whitney test U = 58; N1= 34; N2 = 28; p = 0). This indicates
that students who were instructed through MTL committed
less errors and therefore had a better understanding of the
subject compared to those who were taught through the
conventional approach.

Given this result, we tend to agree with Wilson and Moffat9

that programming is not difficult; rather, it is the way it is
presented to the learners which breeds confusion, leaving
the learners with various misconceptions which frustrate
the effort to learn. With MTL, aspects such as variable
declaration, assignment, variable overwriting and data
operations are made obvious at the very beginning. With
MTL, as demonstrated in Figure 2, Figure 3 and Figure 4,

the meaning of variable declaration, data feeding and data
operation are made obvious by illustrations. Why variables
are declared is made obvious, and what happens to each
variable during initialisation is clearly distinguished. What
and how various operations are carried out and the meaning
of assignment and roles of variables are clearly demonstrated
at every turn of the code. With these aspects made clear,
confusion and ambiguities are potentially mitigated, together
with associated errors.

Discussion
Since MTL permits the programmer to illustrate execution
of the code from the machine’s point of view, it cultivates
the sense of ’I am working the machine’. Samurcay2 observes
that novices tend to feel that the machine is ’reasonably
human‘, and they therefore expect it to understand the
code ’as it was intended‘ rather than ’as it means’. Since the
machine does not turn out to be ’reasonably human‘, novices
are discouraged by bugs reported by the compilers, and their
desire to code is undermined.

Lack of a tool to illustrate the effect of each line of code on the
machine is a major source of misconceptions. Du Boulay4,5

proposes a tool representing a notional machine, advising
that such a machine should observe simplicity, be small and
have few constructs. He argues in favour of implementing a
language in such a way that either pictorial or written traces
can be displayed. MTL, as illustrated in Figure 2, Figure 3
and Figure 4 and as presented in Mselle14 is a programmer-
driven visualisation device which bears most of these
characteristics. Being learner-driven, MTL has the capability
to transfer programming authority to the programmer,
whilst creating the sense that the machine is not responsible
for mistakes committed by the novice.

Flowcharts, animation tools and Memory
Transfer Language
Flowcharts are amongst the traditional tools employed in
illustrating the logic of the code. Flowcharts are powerful tools
for algorithm planning.13,19 They are, however, unsuitable for
precise close-tracking and debugging. Code simulation and
animation tools, such as BlueJ, Jeliot and Plan Ani, have been
introduced recently to illustrate the logic of the code to the
learner.20 Animations are suitable for precise close-tracking.
In effect, they are a plausible breakthrough. However, since
animations are entirely machine-driven, their exclusive use
may accentuate the role of the machine, which is already
made enormous by the compiler and the editor.

Code animators used alone may reinforce the notion that
the machine is ’reasonably human‘ and totally in control of
the programming process. Mselle14 has shown that there can
be a one-on-one relationship between language statements
and the machine semantics, as may be reflected by memory
status. MTL allows the novice to play back the code from the
machine’s point of view. MTL provides the novice with the
necessary freedom from compiler bullying and authority
over the machine. Since MTL is a learner-driven device,

TABLE 1: Error-count summary.

Groups N Total error counts Mean SD

Control 34 392 10.315 4.32049

Experiment 28 208 7.428 4.98463

N, number; SD, standard deviation.

Original Research

doi:10.4102/ijmla.v1i1.3http://www.ijmla.net

Page 5 of 6

it is unconstrained by the initial design of the code. To its
additional credit, MTL can be used in conjunction with other
animators and flowcharts.

Use of Memory Transfer Language for close-
tracking
Perkins et al.15 posit that a vital skill for any programmer
is ’close-tracking’, which means reading the written code
to determine precisely what it does. Close-tracking can
be useful for filtering out bugs before testing a program.
It is also important for diagnosing bugs that appear when
the program is compiled, and sometimes gives clues as to
how bugs should be repaired. Accurate close-tracking is a
mentally demanding activity which requires understanding
of the primitives of the language and the rules for flow of
control. Perkins et al.15 conclude that although in principle
close-tracking is a mechanical procedure, in practice it
often proves a source of difficulties. Students commonly
neglect to do it, but need the information that close-tracking
provides in order to untangle a problem. However, when the
novices attempt to track what their programs are doing, they
often fail.15

Close-tracking is related to a methodical approach
to programming. Kagan and Kogan, cited in Perkins
et al. 15, confirm that those students who naturally approach
problems methodically and reflexively may be better
trackers than those who approach their work in a more trial-
and-error or impulsive fashion. However, close-tracking
can only be attractive to novices if there is an effective tool
to track, diagnose errors and precisely correct them.4,15
As demonstrated in Figure 2, Figure 3 and Figure 4, MTL
stands out as being such a tool. If the novice is not sure of
the semantics of the code, then close-tracking is not useful.
Mselle14,17 has shown that most elementary programming
concepts can be entirely conveyed to novices through MTL.
In this approach novices are trained to learn programming
by an amalgamation of lectures, laboratory classes and
discussion through close-tracking using MTL.

Memory Transfer Language and Feedback factor
Learning feedback is an ingredient which may determine
whether a learner keeps on with a subject or drops out.
Feedback has been demonstrated as playing an important role
in instruction. Many learning theorists posit that feedback
is essential to students’ learning. In general, instructional
feedback provides students with information that either
confirms what they already know or changes their existing
knowledge and beliefs. Meaningful and timely feedback
that is of high quality helps students become cognitively
engaged in the content under study, as well as in the learning
environment in which they are studying. Feedback serves
as a type of formative assessment, designed to improve
and accelerate learning. Specifically, feedback is described
by Ertmer et al.21 as ’anything that might strengthen the
students’ capacity to self-regulate their own performances‘.

When writing code using a conventional approach,
immediate feedback comes from the compilers. Compilers

are unforgiving, bullish, and sometimes misleading. This
unfortunate situation may be one of reasons why many
novices are disheartened by their early experimentation with
programming, and hence develop a dislike for the subject.3
The need to escape from the vagaries of compilers has
prompted some experts to propose specialised languages for
novices.4,5,9

MTL provides the novice with an instrument to play the
role of compiler outside of the machine environment,
putting the novice on a par with the machine with regard
to verification of the correctness or incorrectness of the
program. As demonstrated in Figure 2, Figure 3 and Figure 4,
instead of bullish and terminate feedback provided by the
compiler, MTL provides feedback in an exploratory manner.
It constitutes a temporary refuge from the machine compiler,
and hence a stimulus to persevere with learning rather than
giving up.

Conclusion
The objective of this study was to introduce MTL and
evaluate its impact in reducing common misconceptions
in programming which culminate in programming errors
by novices. We were specifically interested in determining
whether using MTL in teaching programming would reduce
common misconceptions and consequently avoid common
errors in programming and improvement of comprehension.
Results from the experiment confirm that misconceptions
and errors can be significantly reduced if students are
instructed using an instrument that can give them the
power to illustrate the different aspects of programming.
Specifically, a tool such as MTL has proved to be handy for
novices to use to close-track, debug and provide feedback to
them. It was found that using MTL in learning programming
improves comprehension of the subject. There are, however,
some shortcomings with this study. The sample size is too
small to justify generalisation, and the population is taken
from one university. The lecturer of the experiment group
could have been the better teacher with or without MTL,
which could have contributed to good results on the part of
the experiment group.

Recommendations
More experiments in different settings should be carried
out with a much larger and diverse population, to confirm
the effectiveness of MTL. More areas of research on the
effectiveness of MTL in distance learning and in different age
groups are open for future investigation.

Acknowledgements
The author would like to thank Paula Saphir for her
willingness to carry out the experiment. David Moffat is
thanked for his invaluable time in reviewing this paper and
for advice he gave. Jorma Sajaniemi and Moti Ben Ari are
thanked for supporting the MTL idea from its inception (in
the form of RAM diagrams) to the present stage.

Original Research

doi:10.4102/ijmla.v1i1.3http://www.ijmla.net

Page 6 of 6

Competing interests
This study was motivated by academic curiosity. It was not
initiated by any third party. The authors declare that they
have no financial or personal relationships which may have
inappropriately influenced them in writing this paper.

Authors’ contributions
L.M. (University of Dodoma) was the lead researcher, and
H.T. (University of Dar es Salaam) performed the statistical
analysis.

References
1.	 Ramadhan H. Discover. Cybernet Syst. 1992;(31):87–114. http://dx.doi.

org/10.2190/FGN9- DJ2F-86V8-3FAU

2.	 Samurcay R. The Concept of Variable in Programming: Its Meaning and Use in
Problem-Solving by Novice Programmers. Education Stud Math. 1985;16:143–
161.

3.	 Dehnadi S, Bornat R. The Camel has Two Humps (working title). 2006 [cited 2009
Nov 20]. Available from: http://eis.mdx.ac.uk/research/PhDArea/saeed/paper1.
pdf

4.	 Du Boulay B, O’Shea T, Monk J. The Black Box inside the White Box: Presenting
Computing Concepts to Novices. Int J Man Machine Stud. 1981;14:237–249.
http://dx.doi.org/10.1016/S0020-7373(81)80056-9

5.	 Du Boulay B. Some Difficulties of Learning to Program. J Educational Computing
Research. 1986;2:459–472.

6.	 Mayer RE. Comprehension as Affected by Structure of Problem Representation.
Mem Cognition. 1976;4:249–255. http://dx.doi.org/10.3758/BF03213171

7.	 Mayer RE. The Psychology of how Novices Learn Computer Programming. Compu-
ter Surveys. 1981;13:121–141.

8.	 Yousoof M., Sapiyan M., Kamaluddin K. Measuring Cognitive Load - A Solution to
Ease Learning of Programming. 2007 [cited 2007 Aug 22]. Available from: http://
waset.org/journals/waset/v26/v26-41.pdf

9.	 Wilson. A, Moffat D. Evaluating Scratch to Introduce Younger Schoolchildren to
Programming. In: Lawrance J, Bellamy R (eds.). Proceedings of the 22nd Annual
Workshop of the Psychology of Programming Interest Group; 2010 Sep 19–21;
University Carlos III of Madrid, Leganés. Madrid: Maria Paloma Díaz Pérez & Mary
Beth Rosson.

10.	 Mayer RE. Different Problem Solving Competencies Established in Learning
Computer Programming with and Without Meaningful Models. J Edu Psych.
1975;67:725–734.

11.	 Ben Ari M, Sajaniemi J. Roles of Variables from the Perspective of Computer Sci-
ence Educators. [cited 2004 Jun 28–30]. Available from: http://cs.joensuu.fi/pub/
Reports/A-2003-6.pdf

12.	 Ben Bassat LR, Ben Ari M, Uronen P. An Extended Experiment with Jeliot 2000.
Proceedings of the 1st International Program Visualization Workshop. Pavoo, Fin-
land: University of Joensuu Press; 2001. p. 131–140.

13.	 Ziegla U, Crews T. An Integrated Program Development Tool for Teaching and
Learning how to Program. Paper presented at: SIGCSE 1999. Proceedings of the
30th SIGCSE Symposium on Computer Science education.1999 Mar 24–28; New
York: ACM; 1999. p. 276–280. http://dx.doi.org/10.1145/299649.299786

14.	 Mselle L. C++ for Novice Programmers. Berlin: Lap Lambert Academic Publishing;
2010.

15.	 Perkins DN, Hobbs HR, Martin F, Simmons R. Conditions of Learning in Novice
Programmers. J Educational Computing Research. 1986;2:37-55. http://dx.doi.
org/10.2190/GUJT-JCBJ-Q6QU-Q9PL

16.	 Alain A. The Common Programming Errors [cited 2009 Mar 14]. Available from:
http://cprogramming.com/how_to_learn_anything.html.

17.	 Mselle L. Enhancing Comprehension by Using Random Access Memory (RAM)
Diagrams in Teaching Programming: Class Experiment. In: Lawrance J, Bellamy R
(eds.) Proceedings of the 22nd Annual Workshop of the Psychology of Program-
ming Interest Group; 2010 Sep 19–21; University Carlos III of Madrid, Leganés.
Madrid: Maria Paloma Díaz Pérez & Mary Beth Rosson. http://www.ppig.org/
papers/22nd-Teach-1.pdf

18.	 Alain A. What’s Wrong With My Program - Common Programming Mistakes [cited
2009 Mar 20]. Available from: http://cprogramming.com/tutorial/common.html

19.	 Scott A, Watkins M. Duncan M. A Step back from Coding – An Online Environment
and Pedagogy for Novice Programmers [cited 2005 Aug 22] Available from: http://
ics.heacademy.ac.uk/events/jicc11/scott.pdf

20.	 Ala Mutka K. Codewitz Needs Analysis [cited 2003 Feb 22]. Available from: http://
cs.tut.fi/~edge/literature_study.pdf

21.	 Ertmer PA, Richardson JC, Belland B, Camin D, Connolly P, Coulthard G. Using
Peer Feedback to Enhance the Quality of Student. J Computer-Mediated Comm.
2007;12(2):412–233. http://dx.doi.org/10.1111/j.1083-6101.2007.00331.x

http://dx.doi.org/10.2190/FGN9- DJ2F-86V8-3FAU
http://dx.doi.org/10.2190/FGN9- DJ2F-86V8-3FAU
http://eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://dx.doi.org/10.1016/S0020-7373(81)80056-9
http://dx.doi.org/10.3758/BF03213171
http://waset.org/journals/waset/v26/v26-41.pdf
http://waset.org/journals/waset/v26/v26-41.pdf
http://www.interaction-design.org/references/authors/joey_lawrance.html
http://www.interaction-design.org/references/authors/rachel_bellamy.html
http://www.interaction-design.org/references/conferences/proceedings_of_the_22nd_annual_workshop_of_the_psychology_of_programming_interest_group_ppig_2010%2C_sep_2010.html
http://www.interaction-design.org/references/conferences/proceedings_of_the_22nd_annual_workshop_of_the_psychology_of_programming_interest_group_ppig_2010%2C_sep_2010.html
http://www.interaction-design.org/references/publishers/maria_paloma_d%EDaz_p%E9rez_and_mary_beth_rosson.html
http://www.interaction-design.org/references/publishers/maria_paloma_d%EDaz_p%E9rez_and_mary_beth_rosson.html
http://dx.doi.org/10.1145/299649.299786
http://dx.doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
http://dx.doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
http://cprogramming.com/how_to_learn_anything.html
http://www.interaction-design.org/references/authors/joey_lawrance.html
http://www.interaction-design.org/references/authors/rachel_bellamy.html
http://www.interaction-design.org/references/conferences/proceedings_of_the_22nd_annual_workshop_of_the_psychology_of_programming_interest_group_ppig_2010%2C_sep_2010.html
http://www.interaction-design.org/references/conferences/proceedings_of_the_22nd_annual_workshop_of_the_psychology_of_programming_interest_group_ppig_2010%2C_sep_2010.html
http://www.interaction-design.org/references/publishers/maria_paloma_d%EDaz_p%E9rez_and_mary_beth_rosson.html
http://cprogramming.com/tutorial/common.html
http://ics.heacademy.ac.uk/events/jicc11/scott.pdf
http://ics.heacademy.ac.uk/events/jicc11/scott.pdf
http://cs.tut.fi/~edge/literature_study.pdf.
http://cs.tut.fi/~edge/literature_study.pdf.
http://dx.doi.org/10.1111/j.1083-6101.2007.00331.x

